Technical Data

6" BiRotor

Model B090 [6"]
Model B091 [6"]
Model B093 [6"]
Model B094 [6"]
Model B095 [6"]
Model B098 [6”]

General
The BiRotor Meter is a positive displacement meter utilized in the most demanding applications requiring accuracy, long life and ruggedness.

The electronic “P” Series meter configuration features a sealed measuring chamber with one reluctance type electronic sensor. The sealed electronic sensor transmits amplified signals to local or remote instruments. A second optional sensor is available to allow dual channel pulses that are 90 degrees electrically out of phase.

Accuracy
The Mechanical BiRotor’s accuracy is attained by the unique BiRotor design which features two finely balanced rotors. An adjustor, incorporated on the meter, is used to assure maximum accuracy within the meter’s flow range (Mechanical Only).

Principle of Operation
The two spiral fluted rotors within the measuring unit are dynamically balanced to minimize bearing wear. (Refer to Figure 1). As the product enters the intake of the measuring unit, the two rotors divide the product into precise segments of volume momentarily and then return these segments to the outlet of the measuring unit. During this “liquid transition”, the rotation of the two rotors is directly proportional to the flow rate of the liquid throughput. A gear train located outside the measuring unit chamber conveys mechanical rotation of the rotors to a mechanical or electronic register for totalization of liquid throughput. For P-Style units, a pulse verification gear located outside the measuring unit chamber conveys mechanical rotation of the rotors to the sensor and to the electronic register for totalization of liquid throughput.

Dependability
There is no metal to metal contact between the rotors and the measurement chamber. The meter is therefore extremely durable. The rotors, bearings and timing gears are the only moving parts. Maintenance requirements are the lowest in the industry. In addition, materials incorporated within the meter assembly are selected specifically for a wide range of petroleum and industrial liquid applications.

Affordability
In spite of its superior performance, Brodie can offer the Mechanical BiRotor at a very competitive price.

Electrical Classification (P-Style)
Class 1, Groups C & D, Division 1, Explosion proof; Recommended connecting cables Belden 8770, 3 Conductor Shielded, 18 gauge stranded. Maximum recommended cable length 3000 feet (914 meters). Input power: 6-28 Vdc at 20 mA, Output Signal: TTL (0-5V) or voltage dependent.

Design Features
- Extremely long service life
- Economical low maintenance
- Two simple rotors with no metal-to-metal contact are the only moving parts in the measuring chamber.
- No oscillating, reciprocating or sliding parts or cranks to wear or disturb the balanced rotary.
- Conforms with International standards of flowmeter accuracy.
Accessories
Mechanical:
- Preset Counters
- Control Valves
- Large Numerical Registers
- Electronic Register
- Control Valves
- Ticket Printers
- Pulse Transmitters
- Strainers
- Dual Pickoffs for “B” Level Pulse Security

P-Style:
- Electronic Register
- Preamp
- Dual Pickoffs for “B” Level Pulse Security

Materials of Construction
Housing: Welded Steel Construction Combining Steel Castings and Drawn Steel Plate

Measuring Unit:
- Rotors: Three Lobe Rotor - Cast Iron
- Rotor Shafts: Four Fluted Rotor- Aluminum
- Rotor Bearings: E.T.D 150 Stainless Steel
- Body and End Covers: Cast Iron
- O-Ring: Steel
- Drive Shafts: Viton (Standard)
- Drive Gears: Stainless Steel
- Ball Bearings: Stainless Steel

Ordering Information
In order to accurately process an order, such information as product to be metered, product viscosity, product temperature range, ambient temperature range, rate of flow, operating pressure, units of registration, accessories required, and optional features needed must be specified by the customer.

Flow Ranges

<table>
<thead>
<tr>
<th>Meter Models: B090, B091, B093, B094, B095, B098</th>
<th>1.25 cSt.</th>
<th>6.25 cSt.</th>
<th>25 cSt.</th>
<th>125 cSt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Accuracy</td>
<td>Accuracy</td>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>+/- 0.25%</td>
<td>+/- 0.25%</td>
<td>+/- 0.25%</td>
<td>+/- 0.25%</td>
<td></td>
</tr>
<tr>
<td>GPM</td>
<td>1000</td>
<td>100</td>
<td>C/F</td>
<td>C/F</td>
</tr>
<tr>
<td>M³H</td>
<td>227</td>
<td>23</td>
<td>C/F</td>
<td>C/F</td>
</tr>
<tr>
<td>BPH</td>
<td>1428</td>
<td>142</td>
<td>C/F</td>
<td>C/F</td>
</tr>
</tbody>
</table>
Max Working Pressure [at 100 F, 38 C]

<table>
<thead>
<tr>
<th>Model</th>
<th>Connections</th>
<th>Max PSI</th>
<th>DIN Connections</th>
<th>Max Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>B090</td>
<td>6” 150 lb. ANSI</td>
<td>150</td>
<td>DN 80 PN 16</td>
<td>10.3</td>
</tr>
<tr>
<td>B091</td>
<td>6” 150 lb. ANSI</td>
<td>285</td>
<td>DN 80 PN 16</td>
<td>16.0</td>
</tr>
<tr>
<td>B093</td>
<td>6” 300 lb. ANSI</td>
<td>300</td>
<td>DN 80 PN 40</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DN 80 PN 40</td>
<td>20.7</td>
</tr>
<tr>
<td>B094</td>
<td>6” 300 lb. ASI</td>
<td>740</td>
<td>DN 80 PN 16</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DN 80 PN 64</td>
<td>51.0</td>
</tr>
<tr>
<td>B095</td>
<td>6” 600 lb. ANSI</td>
<td>1480</td>
<td>DN 80 PN 64</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DN 80 PN 100</td>
<td>100.0</td>
</tr>
<tr>
<td>B098</td>
<td>6” 150 lb. ANSI</td>
<td>150</td>
<td>DN 80 PN 16</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Temperature Range: -20F to 150F (-29C to 66C) Optional 450F

To convert pressure drop value to the actual process fluid, use the following equation:

\[\Delta P_A = (c_{PA})^{0.25} \times (SG_A)^{0.75} \times \Delta P_m \]

\(\Delta P_A \) = Pressure Drop on Actual Fluid in PSI
\(c_{PA} \) = Viscosity of Actual Fluid in cP
\(SGA \) = Density of Actual Fluid in SG
\(\Delta P_m \) = Pressure Drop on Mineral Spirits

(See Graphs below for Reference)

Pressure Drop

Test Solution: Mineral Spirits

Accuracy

Test Solution: Mineral Spirits

Possible of +/- 0.15%; Contact Factory for viscosity corrections.
<table>
<thead>
<tr>
<th>Electronic Pulses (K-Factor)</th>
<th>Gallons</th>
<th>Liters</th>
<th>BBL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29</td>
<td>7.656</td>
<td>1.218</td>
</tr>
</tbody>
</table>

Shipping Weights and Volume

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>B090, B091, B098</td>
<td>650 lb</td>
<td>20.2 ft³</td>
</tr>
<tr>
<td></td>
<td>295 kg</td>
<td>0.57 m³</td>
</tr>
<tr>
<td>B093</td>
<td>758 lb</td>
<td>21.4 ft³</td>
</tr>
<tr>
<td></td>
<td>344 kg</td>
<td>0.78 m³</td>
</tr>
<tr>
<td>B094</td>
<td>1393 lb</td>
<td>27.7 ft³</td>
</tr>
<tr>
<td></td>
<td>632 kg</td>
<td>0.78 m³</td>
</tr>
<tr>
<td>B095</td>
<td>1495 lb</td>
<td>30 ft³</td>
</tr>
<tr>
<td></td>
<td>678 kg</td>
<td>0.85 m³</td>
</tr>
</tbody>
</table>

*For Certified Dimensional Prints - Consult Factory

NOTE:

Do NOT operate this instrument in excess of the specifications listed. Failure to heed this warning could result in serious injury and/or damage to the equipment.